Name	_ Class	Date
Directed Reading B continued		

- 9. One of the ways to express speed is by using the SI unit
 - of meters per second
- **10.** Name two other units often used for expressing speed.

miles per hour km/h = kilometers per hour

11. What is the equation for average speed?

average speed = (total distance) / (total time)

12. Speed can be represented on a graph where ________ is

plotted on the *x*-axis and position of the object is plotted on the *y*-axis.

13. In the graph in your book illustrating the speed of a dog walking beside a fence, why does the distance traveled in a given second vary?

The graph shows that the dog stopped still between 3 and 6 seconds. Perhaps he urinated on a fire hydrant.

VELOCITY: DIRECTION MATTERS

14. How could two birds flying at the same speed from the same starting point end up at different destinations?

The two birds went in different directions,	
"where the crow flies" is the shortest straight line between to places.	
you can't always drive where the crow flies.	

15. What is the difference between velocity and speed?

speed is a scalar - a number that only says magnitude (how much?) velocity is a vector - a number that says both magnitude and direction.

16. What can change when an object's velocity changes?

The speed OR direction changes.

ACCELERATION

17. Acceleration is the rate at which <u>velocity</u> changes over time.

18. The units of <u>acceleration</u> are the units of velocity divided by a unit of time.

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Name	Class	Date		
Directed Reading B continued				
19. A common unit for accelerati	ion is meters per sec	ond per		
20. An increase in speed is some	times called <mark>posit</mark> i	ve linear		
acceleration.				
21. What are the two terms some	times used to descri	be a decrease in speed?		
<mark>negative linear acceleration = d</mark>	eceleration			
22. Why is an object traveling in	a circle considered t	o be accelerating?		
Changing directions also chang so technically you are accelera pushes you away from the cen centripetal force.	ges the velocity vector, ting. The force you feel fro ter of the circular path and	m it is called		
23. The type of acceleration that	occurs when an obje	ect travels at a constant		
speed in circular motion is ca	alled <mark>centripetal</mark>	acceleration.		
24. Acceleration can be shown o	n a graph of speed ve	ersus		
25. In the graph in your book showing the acceleration of a radio-controlled toy car over 10 s, how can you tell acceleration is positive from 0 s to 5 s?				
the positive slope upward mean positive acceleration	s that you have			
26. In the same figure, how can y is constant between 5 s and 7	700 tell that the speed 78?	d of the radio-controlled car		
The lines is straight horizontal,	= zero slope = constant sp	peed		