Name	Class	Date
Directed Reading B continued		
DNA REPLICATION		
22. The pairing of bases allows the	ne cell to <mark>replicate</mark>	, or make
copies of DNA.		
23. In a DNA molecule, pairs of b	bases are <mark>complimen</mark>	tary to
each other, since each base al	lways bonds with on	ly one other base.
24. In a DNA molecule, what base CGAC?	e sequence is comple	ementary to the sequence
25. In what direction does a DNA It splits down the middle	molecule split durin	ng replication?
26. As a DNA molecule splits, wh molecule?	at is added to the ex	posed bases on the original
27. What happens to DNA every t	time a cell divides?	
It is copied into another set of sister of	chromatid chromosomes	
28. In the cell, what does the job	of unwinding, copyi	ng, and rewinding the DNA?
special proteins called centrioles		

Skills Worksheet)

Directed Reading B

Section: How DNA Works (pp. 212–217)

1. How much DNA does a single cell in your body hold?

You have billions of nucleotides stored in 46 chromosomes

UNRAVELING DNA

2. What makes up a chromosome?

DNA molecules wrapped around proteins

3. What is chromatin?

DNA and proteins inside the nucleus

4. What happens to DNA to make it fit inside a cell?

It condenses (gets smaller - more concentrated) by coiling up

5. What forms the code that carries information for DNA?

Sequences (pattern) of nucleotide bases represents our codes of DNA

6. A string of nucleotides that give the cell information about a certain trait is

known as $a(n) __{gene}$

7. Describe the genetic material contained in each of the 46 chromosomes of a human cell just before division.

The DNA strands are the most tightly coiled and condensed into V shaped chromatids. This way they are small unit packages that can be separated during mitosis.

8. Describe the chromatids that make up a chromosome when a cell is ready to

GENES AND PROTEINS

groups of 3 bases called triplets

- 9. How are the codes for specific amino acids formed?
 - **a.** with groups of three bases
 - **b.** with groups of four bases
 - **c.** with a pair of bases
 - **d.** with groups of proteins

Name	Class_		Date
Directed Reading I	B continued		
protein_ 10. A long stri a. nucleot b. cell. c. trait. d. protein.		a	
one gene = one protein <mark>11.</mark> A set of in a. nucleot b. amino a c. gene. d. chromo	ide. acid.	particular pi	rotein is a(n)
proteins 12. The chemic cells are a. mutage b. chroma c. riboson d. proteins	utids. nes.	gers for mar	y processes within
typically h a. hundred b. thousar	ds nds ds of thousands	teins does a	single organism
14. A molecul production a. RBA. b. RUA. c. RCA. d. RNA.	e present in all living cel n is	ls that plays	a role in protein
uracil 15. The base t a. adenine b. guanine c. uracil. d. cytosine	2.	RNA is calle	ed
16. What two forms of	of RNA work with riboso	mes to mak	e proteins?
tRNA = transfer RN and mRNA = messe			

Name	

Directed Reading B continued

Match the correct description with the correct term. Write the letter in the space provided.

provided.		
	rrorlike copy of one side of the segment NA containing a gene	a. ribosome b. messenger RNA
	factory" in the cytoplasm where a new ein molecule is made	c. protein d. transfer RNA
from	cules that pick up specific amino acids the cytoplasm, whose bases match up bases on messenger RNA	
	cule formed when amino acids released ansfer RNA link then fold up	
CHANGES IN G	ENES	
is cal a. m b. m c. an	ange in the nucleotide-base sequence of a lled a(n) utagen. utation. atigen. aromatid.	a gene or DNA molecule
a. m b. m c. an	lom errors when DNA is copied are called utagens. utations. ntigens. rromatids.	1
calle a. m b. pr	ysical or chemical agent that can cause a d a(n) utagen. rotein. ntigen.	mutation in DNA is

d. chromatid.

24. What is one example of a mutation that causes an improved trait?

A mutation that makes an organism better able to survive during a drought	
(lack of water period of time). Ex. leaves that have the mutation to make	
thicker waxy cuticle layers will dehydrate slower.	

25. Why do some mutations cause no changes to a trait?

Sometimes a triplet of DNA code can have a changed letter,	
but the genetic code will still decipher and translate (change	
into amino acid sequences) with the correct amino acid.	

Copyright $\ensuremath{\mathbb O}$ by Holt, Rinehart and Winston. All rights reserved.